Урок «Рациональные неравенства» 9 класс

Учитель математики МОУ СШ №57 г. Волгограда

Батенкова В.В.

Цель: повторить основные методы решения неравенств и познакомить с методом «лепестков» при решении рациональных неравенств

1. Актуализация. (10-15 минут)

1) Разделите неравенства на группы:

I – линейные, II – квадратные, III - рациональные

1.
$$2x - 3(x - 7) > 15$$

2.
$$(x-1)^2(4x+8)(2x-3) \ge 0$$

$$3. \frac{2x+1}{3} - \frac{3x-1}{2} > 1$$

4.
$$x(7-x) \ge 0$$

5.
$$2x^2 - 5x < 3$$

6.
$$\frac{6x-5}{4x+1}$$
 < 0

7.
$$7x + 3 \le 30 - 2x$$

8.
$$\frac{x(x+3)}{2-x} \ge 0$$

9.
$$x - x^2 + 2 \ge 0$$

$$10. \qquad \frac{x^2 + 6x + 9}{x^2 - 6x} \le 0$$

Вопросы учителя:

- 1. Как решать линейные неравенства? (так же, как и линейные уравнения; известные в одну сторону, неизвестные в другую, при делении на «-» меняется знак неравенства)
- 2. Что нам помогает решить квадратное неравенство? (парабола) Как она помогает? (помогает быстро расставить знаки в зависимости от расположения ветвей)
- 3. Какой метод применяется при решении рациональных

неравенств? (Метод

интервалов)

2) Решите устно линейные неравенства:

$$3x > -9$$

$$x > -3; x \in (-3; +\infty)$$

$$-4x \ge 12$$

$$x \le -3$$
; $x \in (-\infty; -3]$

$$-0.01x \le -10$$

$$x \ge 1000; x \in [1000; +\infty)$$

$$\frac{1}{5}x \le -2$$

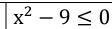
$$x \le -10$$
; $x \in (-\infty; -10]$

$$2x + 4 > 1$$

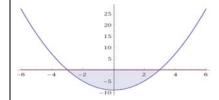
$$2x + 4 > 1$$
 $x > -1,5; x \in (-1,5; +\infty)$

3) Решите устно квадратные неравенства:

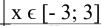
1. $x^2 \le 9$

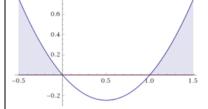


$$(x-3)(x+3) \le 0$$



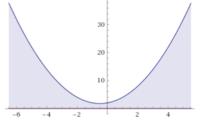
2.
$$x(x-1) \ge 0$$

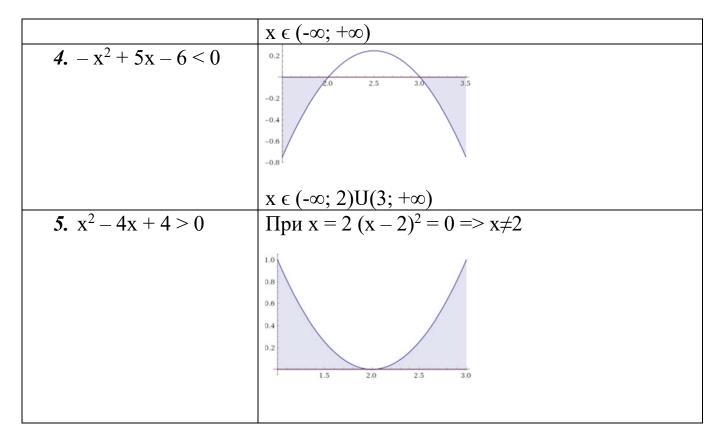




$$x \in (-\infty; 0]U[1; +\infty)$$

3.
$$x^2 + x + 2 > 0$$





Обсудили ответы.

Откройте тетради и давайте решим рациональные неравенства

4) Решите рациональные неравенства

$$1)\,\frac{x-2}{x+3} \ge 0$$

2)
$$\frac{(x-2)^2}{x+3} \ge 0$$

При каких значениях переменной х эта дробь не существует? (не имеет смысла)

Если знаменатель дроби = 0.

Значит, . . .

Ответы:

1)
$$x \in (-\infty; -3)U[2; +\infty)$$

2)
$$x \in (-3; +\infty)$$

Вопросы учителя:

- 1. **Что вы заметили при решении данных неравенств?** (знаки могут не чередоваться)
- 2. Как вы думаете, от чего это зависит? (от степени)

- 3. Эта ситуация осложняет решение неравенств? Чем? (да, теперь знаки функции необходимо проверять на каждом интервале!)
- 4. А может, есть способ, все- таки не менять привычный алгоритм решения? (возможно есть)

Давайте попробуем сформулировать тему урока.

2. Изучение нового. Метод «Лепестков» (10 мин)

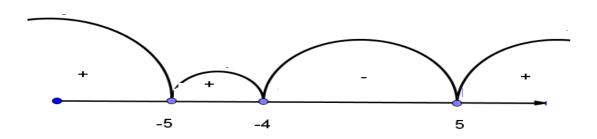
Итак, причина затруднения применения метода интервалов: не чередуются знаки на интервалах, что приводит к необходимости проверки знаков функции на каждом интервале.

Давайте решим следующее неравенство:

$$(x-5)(x+4)(x+5)^2 \le 0$$

$$(x-5)(x+4)(x+5)^2=0$$

$$x_1 = 5$$
, $x_2 = -4$, $x_3 = -5$



$$x \in \{-5\}U[-4; 5]$$

Некоторые ученики могут забыть про x = -5.

Вызвать к доске двух учеников (того, кто решил правильно и того, кто забыл про -5). Разбираем.

А теперь подумаем, как нам сделать так, чтобы не забыть про x = -5

Давайте попробуем решить это неравенство иначе, доразложим его на множители

$$(x-5)(x+4)(x+5)(x+5) \le 0$$

$$x_1 = 5$$
, $x_2 = -4$, $x_3 = -5$, $x_4 = -5$.

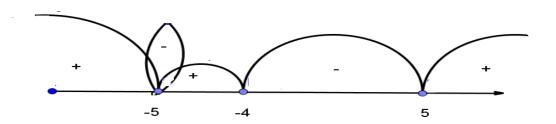
Получаем, что x = -5 встречается 2 раза, т.е. точка накладывается сама на себя.

Должен ли здесь быть интервал? (да)

А можно ли вот так изобразить этот интервал? (изобразить лепесток)

На что это похоже? (лепесток, лучик, цветок)

Как вы думаете, какое название у данного метода? (метод лепестков)



Чередуя, расставим знаки в каждом интервале, учитывая и интервал с началом и концом в точке-5, и по рисунку запишем решение исходного неравенства.

Ответ: {-5} U [-4; 5]

3. Закрепление. (15 мин)

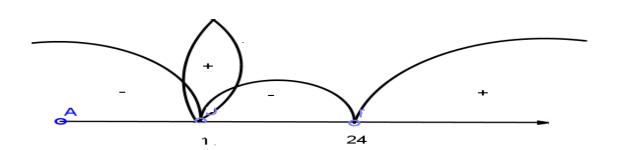
Примеры:

No1
$$(x-1)^2(x-24) < 0$$

$$(x-1)^2(x-24)=0$$

x = 24; x = 1- корень встречается 2 раза

В точке x = 1 дорисуем 1 «лепесток».



Определим знак на любом промежутке, например $(-\infty; 1)$ и, чередуя, проставим знаки.

Ответ: (-∞; 1) U (1;24)

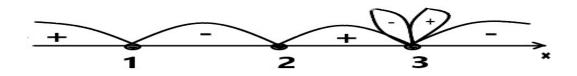
№ 2.
$$(x-1)(3-x)^3(x-2) \le 0$$

$$(x-1)(3-x)^3(x-2)=0$$

x = 1; x = 2; x = 3 – корень встречается 3 раза

В точке x = 3 дорисуем 2 «лепестка».

Определим знак на любом промежутке, например (-∞; 1) и, чередуя, проставим знаки.



Ответ: $[1; 2]U[3; +\infty)$

$$N_2 3. \frac{(x^2 - 6x + 9)}{(x - 6)^3} \ge 0$$

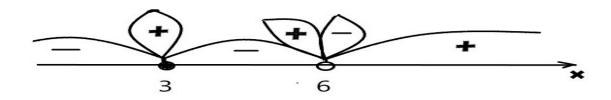
$$\frac{(x^2 - 6x + 9)}{(x - 6)^3} = 0$$

$$\frac{(x-3)^2}{(x-6)^3} = 0$$

A что мы должны учесть, когда у нас дробно-рациональное уравнение? (знаменатель отличен от 0)

А как это изобразить на рисунке? (точки знаменателя будут пустые)

$$x = 3; x \neq 6$$

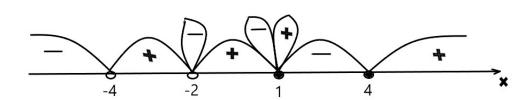


Ответ: $\{3\}$ U(6; $+\infty$)

$$N_{2} 4. \frac{(x-1)^{3}(x-4)}{(x+4)(x+2)^{2}} \leq 0$$

$$\frac{(x-1)^3(x-4)}{(x+4)(x+2)^2} = 0$$

$$x = 4$$
; $x = 1$; $x \neq -4$; $x \neq -2$



Ответ: $(-\infty; -4)$ U[1; 4]

№ 5. Работа в парах

По заданному ответу составьте неравенство. (- ∞ ; -3]U{-1}U(2; 4)

$$\frac{(x+1)^2(x+3)}{(x-2)(4-x)} \ge 0; \, \frac{(x+1)^2(x+3)}{(x-2)(x-4)} \le 0$$
 возможные неравенства

7. Подведение итогов урока. (2 минуты)

С каким новым методом решения неравенств мы сегодня познакомились?

В чем преимущество данного метода? (возможность привычного чередования знаков; не теряются одиночные точки)